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ABSTRACT 

At present time, about 70% of energy is generated from fossil fuels and only about 30% is produced 

from renewable energy sources. The forecasted energy demand increases make evident that the conventional 

oil reserves that can be commercially exploited was vanished after 2050. Deteriorating Environmental condition 

demands sustainable renewable energy sources with least greenhouse gases emission. Third generation biofuel 

from microalgae can fulfill are demand of environmentally friendly biofuel with least GHG emission. In present 

research an affected has been made to enhance lipid content via saline stress. Lipid estimate showed a 

significant source in lipid. It may help to curb are dependency on fossil fuels. Fossil fuels are high energy sources, 

but these are Reduce day to day. These fuels high demand present in time but fossil stock is limited. The present 

work is a particularly important and unique work to cope with fossil fuel deficiency and greenhouse gases 

(GHGs). Oleaginous green microalgae are very efficient to overcome fossil fuel deficiency and environment 

related problem. In this work we will cultivate in-vitro three different microalgae which have significant amount 

of lipid. And second phase saline stress was employed to enhance lipid content in the selected microalgae.  
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RESUMEN 

En la actualidad, alrededor del 70% de la energía se genera a partir de combustibles fósiles y solo 

alrededor del 30% se produce a partir de fuentes de energía renovables. Los aumentos previstos en la demanda 

de energía hacen evidente que las reservas de petróleo convencional que se pueden explotar comercialmente 

se desvanecieron después de 2050. El deterioro de las condiciones ambientales exige fuentes de energía 

renovables sostenibles con la menor emisión de gases de efecto invernadero. El biocombustible de tercera 

generación a partir de microalgas puede satisfacer la demanda de biocombustible ecológico con la menor 

emisión de GEI. En la presente investigación se ha realizado un efecto para mejorar el contenido de lípidos a 

través del estrés salino. La estimación de lípidos mostró una fuente significativa de lípidos. Puede ayudar a frenar 

la dependencia de los combustibles fósiles. Los combustibles fósiles son fuentes de alta energía, pero estos se 

reducen día a día. Estos combustibles presentan una alta demanda en el tiempo pero el stock fósil es limitado. 

El presente trabajo es particularmente importante y único para hacer frente a la deficiencia de combustibles 
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fósiles y los gases de efecto invernadero (GEI). Las microalgas verdes oleaginosas son muy eficientes para 

superar la deficiencia de combustibles fósiles y los problemas relacionados con el medio ambiente. En este 

trabajo vamos a cultivar in vitro tres microalgas diferentes que tienen una cantidad significativa de lípidos. Y se 

empleó una segunda fase de estrés salino para mejorar el contenido de lípidos en las microalgas seleccionadas. 

Palabras clave: Transesterificación, Biocombustibles de tercera generación, Oleaginosas, microalgas, Biodiesel 

 

INTRODUCTION 

Biodiesel is a biodegradable and renewable fuel which can be produced from a variety of feedstock and 

is currently being produced in many parts of the world. (Edith Martinez-Guerra et al. 2018). Biodiesel production 

may not completely replace the fossil fuel consumption, diminish the dependency on this conventional depleting 

sources. One of the major drawbacks of biodiesel is the feedstock availability for its production. However, the 

use of microalgae has demonstrated its capabilities of producing non-toxic, high-quality biodiesel.  

Transesterification is simply the conversion of lipids in the feedstock into biodiesel by adding an ethanol 

and methanol are the most common acyl acceptors used for biodiesel production; while the catalyst can be 

acidic, basic, or enzymatic. (Ma F, Hanna MA et al. 1999).  

Microorganisms that can be found in freshwater, wastewater, and marine water sources. Their 

characteristics are like those of other plants, however, microalgae are more efficient converting solar energy 

because of their simple cellular structure (Arun N, Singh DP et al. 2012).  

They use sunlight for reducing CO2 to biofuels, and they can accumulate significant amounts of 

triglycerides within their cells suitable for biofuel production through transesterification reaction (Dai YM, Chen 

et al. 2014).  

The lipid accumulation in microalgal cells ranges from 25 to 75% of its dry weight (Boussiba S et al. 

1987). Moreover, microalgae have the potential of fixing 1.83 tons of atmospheric CO2 when producing one ton 

of algae biomass (Chisti Y. 2007). Also, microalgae are oil producing factories producing one hundred times more 

oil per acre than any other plants (Mubarak M, Shaija S, et al. 2015). 

The rapid economic growth that took place in the second half of the 20th century caused a re-

orientation in the manner of utilization of energy raw materials. A new model of the world economy has 

developed based on petroleum and natural gas, with a declining importance of hard coal (Ryan et al., 2006; Mata 

et al., 2010). However, the resources of those raw materials deplete fast, and their use causes several 

unfavorable effects, such as acid rains or global warming with the resultant climate changes (Demirbas, 2007; 

Somerville, 2007).  

The dependence of the world economy on oil is such that speculations concerning the exhaustion of 

the raw material may result in a crisis in the world market. Such a phenomenon happened thrice in 1973, at the 

turn of 1980 and 1981 and 2008, when the price of oil soared to the level of 146.14 dollars per barrel (Huang et 

al., 2010). Apart from this, transport and the energy producing industry are the primary anthropogenic sources 

of greenhouse gas emissions in the European union that are responsible for more than 20 and 60%, respectively, 

of that emission (Mata et al., 2010).  
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In recent research microalgae such as Feedstock avoids these issues and presents several distinct 

advantages of not requiring agricultural or arable lands for production high photosynthetic efficiencies and 

biomass productivities (biomass doubled in less than one day), and one hundred times more lipids per acre of 

land [M. R Tredici, 2010]. Moreover, the main storage lipids in microalgae are neutral lipids (NLs) or 

triacylglycerols that can be esterified to FAMEs with the primary profiles of C16 and C18, proven to be the most 

suitable for biofuel production [S. Champagne Ge, P et al. 2017].  

Energy crisis, global warming, and climate changes concern on the sustainability issues of fossil fuels 

utilization and energy supply. Biofuels as types of renewable, sustainable energy are recognized with the highest 

potential to satisfy the global energy demand. 

Biofuels can be divided into three categories: First generation biofuels use edible feedstock such as soya 

beans, wheat, corn, rapeseed, oil crops, maize, sugarcane, and sugar beet, while second generation biofuels are 

derived from wastes and dedicated lignocellulosic feedstock such as switch grass (Panicum virgatum) and 

Jatropha (Zhu, et al. 2016). One of the major disadvantages of both first- and second-generation biofuels is that 

the cultivation of these food or nonfood crops as biofuel feedstock might compete for limited arable farmland, 

which should be utilized to cultivate crops as food feedstock, (Zhu et al. 2016). 

Due to continuous and increasing combustion of fossil fuel the amount of greenhouse gas CO2 has 

increased. As a results global warming and climate change are threatening ecological stability, food security and 

social welfare (Chisti, 2008; Christenson, 2011). The transportation and energy sector are the two major sources, 

responsible for the generation of 20% and 60% of greenhouse gases (GHG) and fossil fuels emissions, 

respectively, and it is expected that with the development of emerging economies the global consumption of 

energy will rise, and this will lead to more environmental damage (Stephens, et al.2011).  

Lipids in the form of triacyl glycerides typically provide a storage function in the cell that enables 

microalgae to endure adverse environmental conditions (Giorgos and Elis, 2013; Kalpesh, et al. 2012). Studies 

have indicated that the lipid content of microalgae can be enhanced by changing the cultivation conditions and 

objecting them to diverse stress conditions (Pittman, et al. 2011; Devi and Venkta Mohan, 2014). 

The major stress conditions applied to enhance lipid accumulation are temperature. Light intensity, pH, 

salinity, minerals salt and nutrients (Takagi, 2006; Ifeanyi, et al. 2011; Devi, et al. 2012). 

Salinity stress can also lead to increment in the lipids content of microalgae due to its crucial role in 

causing changes in the fatty acid metabolism (Kalita, et al. 2011). Under high salinity stress, many organisms 

including microalgae alter their metabolism to adapt to the extreme environment (Kan, et al. 2012). The ability 

of microalgae to survive in saline environment under the influence of osmotic stress has received considerable 

attention which can also affect cell growth and lipid formation (Asulabh, et al. 2012). 

Fluctuation in the salt content of the growth medium has also been found to alter the lipid composition 

of microalgae (Kalpesh, et al. 2012). As, algae are inhabitant of biotopes characterized by varying salinities, they 

have gained significance in salt tolerance studies domain any have served as model organisms for better 

understanding of salt acclimation in more complex physiological processes (Talebi, et al. 2013; Alkayal, et al. 

2011). 
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Microalgae are being employed as potential generation vehicles to harness various useful products like 

biofuels, nutraceuticals, animal feeds and biomaterials etc. (Singh, et al., 2016).  

 

MATERIAL AND METHODS   

Microalgae and media composition: Chlorella pyrenoidosa, Chlorella protothecoides and Scenedesmus 

obliquus was procured from National Collection of Industrial Microorganisms (NCIM), Pune, India. Stock cultures 

of these algae was cultivated in BG11 medium at temperature ranges 32±2oC under natural day light illumination 

in twelve 250 ml Erlenmeyer flasks, four for each alga. 150 ml freshly prepared BG11 medium was taken into 

each erlenmeyer flask, and each was inoculated with 20 % of inoculum i.e., 30 ml. Each liter of the BG11 medium 

contained NaNO3-1.5 g, K2HPO4-0.04 g, MgSO4 7H2O-0.075 g, CaCl 22H2O-0.036 g, Citric acid-0.006 g, NaCO3-

0.02 g, H3BO3-0.00286 g, MnCl2 4H2O-0.00181 g, ZnSO4 7H2O-0.00022 g, Na2MoO 42H2O-0.00039 g, CuSO4 5H2O-

0.00008 g, Co (NO3)2 6H2O-0.00005 g, (NH4)6Mo7O24 4H2O-0.003 g, Na2EDTA-0.00001 g. The inoculums of known 

optical density (OD) at 680 nm was used to inoculate 1800 ml of freshly prepared BG11 medium. All the cultures 

were inoculated under aseptic conditions to avoid contamination. Illumination of 11 μmol m−2 s−1 at 32±2°C was 

provided to the culture for four days on an orbital shaker at 120 rpm. 

These cultures were selected based on their lipid or fats. BG11 nutrient media was used to cultivate 

selected oleaginous green algae. Different saline concentrations of NaCl dose were prepared and applied to 

evaluate the impact of salt stress on lipid content of the selected algae. Different saline NaCl concentration was 

0, 10, 25, 50, mM. All experiments were executed in triplicates. All the working solutions was inoculated by 3 % 

(v/v) of stock algal species cultures. The flasks was incubated under natural day light illumination at 11 µmol 

(photon)/m2s-1 at 32±2oC for 20 days with shaking at 120 rpm. 10 min. d-1.  

Culture conditions: The composition and quantity of lipids content are species-dependent and can be 

affected by external cultivation conditions, such as light intensity, temperature, carbondioxide, nutrient 

starvation, salinity stress, pH. All algal species are cultivated and maintained in natural conditions. 

Biomass Growth Measurement: Optical density of growing micro algal culture was recorded by UV-

Visible Spectrophotometer 2203 (SYSTRONICS) at 680 nm. Optical density of culture was recorded a regular basis 

at the interval of 4 days upto 20 days. 

Measurement of lipid content (Folch et. al. 1957): Dried microalgae (40 mg) were taken in 5 ml of 

extraction solvent chloroform: methanol (2:1 v/v) The extract was filter via Whatman no.1 filter paper and 3 ml 

of 1% NaCl (1gm/100ml) was added to the filtrate. The resulting solution was transferred to a separating funnel 

to for separation. The lower organic phase containing the lipid components was collected in a small pre-weighed 

petri plate. It was kept overnight in a dessicator at room temperature in dark place. The beaker containing the 

dried extracts was reweighed and total lipids was estimated by subtracting the initial weight from the final 

weight. 

 

RESULT AND DISCUSSION 

Cultivation of Oleaginous green microalgae: There are three microalgae which have been elected for 

research work were Chlorella pyrenoidosa, Chlorella protothecoides and Scendesmus obliquus all were pure 
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culture and procured from National Collection of Industrial Microorganism (NCIM), Pune, Maharashtra, Precured 

algae were sub-cultured in prescribed medium at temperature ranges 32±2oC under natural day light 

illumination in twelve 250 ml Erlenmeyer flasks, experiment was executed in triplicate. 
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Figures-1   Cultivation of green oleaginous microalgae 
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Spectroscopy of microalgal cultures (Fig 3) 

Chlorella pyrenoidosa, Scendesmus obliquus and Chlorella protothecoides were cultured in prescribed 

medium BG11 broth upto 20 days. Optical density was recorded at the interval of 4 days upto 20 days at 680nm 

via UV-Visible Double Beam Spectrophotometer 2203. 

In Chlorella pyrenoidosa maximum O.D. was recorded in those culture stressed with 10mM, non-iodized 

NaCl, while least O.D recorded in cultures. Which stressed with 50mM non-iodized NaCl. However, optical 

density was maximum i.e, 0.706nm in control. 

Results showed that saline stress inhibit growth rate of algae in some extent. 

Spectroscopic access of Scendesmus obliquus 

In Scendesmus obliquus maximum O.D. was recorded in those culture stressed with 10mM, non-iodized 

NaCl, while least O.D recorded in cultures. Which stressed with 50mM non-iodized NaCl. However, optical 

density was maximum i.e, 0.192nm in control. Results showed that saline stress inhibit growth rate of algae in 

some extent. 

Spectroscopic access of Chlorella protothecoides 

In Chlorella protothecoides maximum O.D. was recorded in those culture stressed with 10mM, non-

iodized NaCl, while least O.D recorded in cultures. Which stressed with 50mM non-iodized NaCl.However, optical 

density was maximum i.e, 0.427nm in control. Results showed that saline stress inhibit growth rate of algae in 

some extent. 

Lipid Estimation (Folch et al., 1957) 

 

Figure-2 Lipid Estimation by Folch method 
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 Figure 3. Spectroscopy of microalgal cultures 

A significant surge has been recorded in lipid content when algae were stressed with non-iodized NaCl. 

Maximum lipid content 28.5mg has been recorded in Chlorella protothecoides when stressed. while lipid content 

was 20mg when not stressed. In Scendesmus obliquus maximum lipid content 4.8 mg has been recorded when 
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stressed. While lipid content was 9.6mg when not stressed. In Chlorella pyrenoidosa maximum lipid content 19.3 

mg has been recorded when stressed. While lipid content was 8mg when not stressed (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

Fig . 4. Lipid content in Oleaginous green microalgae 

 

CONCLUSION 

Oleaginous green microalgae- Chlorella pyrenoidosa, Chlorella protothecoides and Scendesmus obliquus 

are potent for biofuel production. After maintained microalgal have been sub-cultured successfully in phycology 

lab, DEI Dayalbagh Agra. After experimentation of impact of saline stress, a significant stage in lipid content of 

all selected green microalgae has been observed. Although growth rate of microalgae is affected due to saline 

stress. Spectroscopic data has revealed slight depression in growth rate of microalgae. 

Significance and prospects: At present time, about 70% of energy is generated from fossil fuels and only 

about 30% is produced from renewable energy sources. The forecasted energy demand increases make evident 

that the conventional oil reserves that can be commercially exploited was vanished after 2050. Deteriorating 

Environmental condition demands sustainable renewable energy sources with least greenhouse gases emission. 

Third generation biofuel from microalgae can fulfill are demand of environmentally friendly biofuel with least 

GHG emission. In present research an affected has been made to enhance lipid content via saline stress. Lipid 

estimate showed a significant source in lipid. It may help to curb are dependency on fossil fuels. Fossil fuels are 

high energy sources, but these are Reduce day to day. These fuels high demand present in time but fossil stock 

is limited. These sources are not renewable energy sources. And Oleaginous green microalgae are a high energy 

sources and high lipid content. These energy sources are a renewable and sustainable energy sources. Thus, this 

source is environment friendly biofuels. Strategies for cost reduction is producing microalgal biodiesel by using 

a biorefinery based production strategy. 

Data availability 

All data are available in Department of Botany, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh 

Agra-5. 
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